
Copyright 2002-2008, Craig Berntson. All rights reserved.

Integrating Crystal Reports with Visual FoxPro

Overview

In this session, you will learn how to seamlessly integrate Crystal Reports into your Visual

FoxPro application. Crystal Reports give the developer full control over programmatically

creating, modifying, printing, and exporting reports.

Integration Basics

For many years, Crystal Reports has provided developers with the capabilities to integrate

reports into applications. The current integration method, the Report Design Control (RDC) is

the method recommended by Crystal Decisions. It consists of four main part

 Designer Runtime Library (CRAXDRT.DLL). The primary integration method. A COM

Automation server that provides report manipulation, printing, and exporting capabilities.

 Designer Design and Runtime Library (CRAXDDRT.DLL). This component provides all

the features of the CRAXDRT.DLL and supports the Distributable Report Designer.

 Report Viewer. An ActiveX control used to preview reports.

 Distributable Report Designer. An ActiveX control used to give users report design

capabilities.

Before using the CRAXDRT.DLL, you should register the component with Visual FoxPro’s

Intellisense Manager. This will allow all the properties, methods, and events, to be selected using

Intellsense. The following steps guide you through this registration process:

1. From the Visual FoxPro menu, select Tools | Intellisense Manager.

2. Select the “Types” tab.

Copyright 2002-2008, Craig Berntson. All rights reserved.

3. Click “Type Libraries” to display the Type Library References dialog.

4. Select “Crystal Reports 8.5 ActiveX Designer Runtime Library” from the list. Make sure

the check box next to the item is checked.

5. Click “Done” to return to the IntelliSense Manager

6. Click OK.

7. Test the IntelliSense settings. In the Command Window, type “MODIFY COMMAND

Test” then press Enter

8. Type the following code into the editor window

Copyright 2002-2008, Craig Berntson. All rights reserved.

LOCAL oCR AS CrystalRuntime.Application

oCR.

9. Notice that as soon as you press the . that IntelliSense will kick in and give you a list of

PEMs from the Crystal Reports Application object.

10. Press Escape and answer Yes to the Discard Changes dialog.

Throughout this document, you’ll see other LOCAL declarations for different RDC objects.

These LOCAL declarations will make IntelliSense work for these different objects.

Common Reporting Functions

The most common things you’ll do with the RDC are print, access data, export, and preview.

Before jumping into these an overview of the RDC object model is in order.

Copyright 2002-2008, Craig Berntson. All rights reserved.

At the top of the model is the Application object, followed by the Report object. You’ll need to

instantiate these before you can do anything else with the report.

The left-hand side of the object model deals with each report object. Sections, fields, and more

are shown. The right hand side outlines the data access and manipulation objects and collections.

The following code shows how to instantiate the primary objects and open a report:

LOCAL oCR AS CRAXDRT.Application

LOCAL oRpt AS CRAXDRT.Report

oCR = CREATEOBJECT(“CrystalRuntime.Application”)

Copyright 2002-2008, Craig Berntson. All rights reserved.

oRpt = oCR.OpenReport(“C:\Temp\Taz.RPT”)

Printing a Report

Printing could be the most often performed function for a report. Here’s the code to do this:

LOCAL oCR AS CRAXDRT.Application

LOCAL oRpt AS CRAXDRT.Report

oCR = CREATEOBJECT(“CrystalRuntime.Application”)

oRpt = oCR.OpenReport(“C:\Temp\Taz.RPT”)

IF oRpt.HasSavedData

oRpt.DiscardSavedData()

ENDIF

oRpt.PrintOut()

It’s a good idea to discard any data that may have been saved with the report. The PrintOut

method will display a print dialog to the user. If you don’t want the dialog to show, pass False as

the first parameter.

Two other methods of interest are PrinterSetup() and SelectPrinter(). PrinterSetup() lets you

programmatically change printers. SelectPrinter() displays the Print Setup dialog.

Copyright 2002-2008, Craig Berntson. All rights reserved.

Accessing Data

It’s almost certain that the data location will change between design and runtime of the report.

Using the Database object, DatabaseTables collection, and DatabaseTable object, you can

change the report location.

The exact steps for accessing data depend on the type of data and the access method, either

direct, via ODBC, or through OLE DB. In general, you need to create the Database object, then

use the DatabaseTables collection to drill down to each DatabaseTable object. Note that

collections in Crystal Reports are 1-based. There will be one DatabaseTable object for each table

in the report. The following code shows each of these methods.

Direct Data Access

Direct data can be used directly from Crystal Reports without going through ODBC or OLEDB.

Fox 2x and Access are examples of direct data. In the case of direct data, the location and name

of the table may change at runtime.

LOCAL oCR AS CRAXDRT.Application

LOCAL oRpt AS CRAXDRT.Report

LOCAL oDB AS CRAXDRT.Database

LOCAL ocDBT AS CRAXDRT.DatabaseTables

LOCAL oDBT AS CRAXDRT.DatabaseTable

oCR = CREATEOBJECT("CrystalRuntime.Application")

oRpt = oCR.OpenReport("C:\EFox\Direct1.RPT")

Copyright 2002-2008, Craig Berntson. All rights reserved.

* Create the Database object

oDB = oRpt.Database()

* Get a references to the DatabaseTables collection

ocDBT = oDB.Tables()

* Get a reference to the DatabaseTable object for table 1

oDBT = ocDBT.Item(1)

* Set the location

oDBT.Location = "C:\EFox\Customer.DBF"

oRpt.PrintOut()

ODBC Data

Once you’ve setup the DSN, connecting to ODBC data is pretty simple.

LOCAL oCR AS CRAXDRT.Application
LOCAL oRpt AS CRAXDRT.Report
LOCAL oDB AS CRAXDRT.Database
LOCAL ocDBT AS CRAXDRT.DatabaseTables
LOCAL oDBT AS CRAXDRT.DatabaseTable

oCR = CREATEOBJECT("CrystalRuntime.Application")
oRpt = oCR.OpenReport("C:\EFox\ODBC1.RPT")

* Create the Database object
oDB = oRpt.Database()

* Get a references to the DatabaseTables collection
ocDBT = oDB.Tables()

* Get a reference to the DatabaseTable object for table 1
oDBT = ocDBT.Item(1)

* Set the location
* This one works for a DSN
oDBT.SetLogOnInfo("TazODBCRuntime")

IF oRPt.HasSavedData
 oRPT.DiscardSavedData()
ENDIF

oRpt.PrintOut()

XML Data

Crystal Reports uses the CRXML ODBC driver to connect to XML data. You’ll need to setup a

DSN for the data access. The following code shows how to access the XML file at runtime.

LOCAL oCR AS CRAXDRT.Application
LOCAL oRpt AS CRAXDRT.Report

Copyright 2002-2008, Craig Berntson. All rights reserved.

LOCAL oDB AS CRAXDRT.Database
LOCAL ocDBT AS CRAXDRT.DatabaseTables
LOCAL oDBT AS CRAXDRT.DatabaseTable

oCR = CREATEOBJECT("CrystalRuntime.Application")
oRpt = oCR.OpenReport("C:\EFox\XML1.RPT")

* Create the Database object
oDB = oRpt.Database()

* Get a references to the DatabaseTables collection
ocDBT = oDB.Tables()
* Get a reference to the DatabaseTable object for table 1
oDBT = ocDBT.Item(1)

* This one works for a DSN
oDBT.SetLogOnInfo("TazXMLRuntime")
IF oRPt.HasSavedData
 oRPT.DiscardSavedData()
ENDIF

oRpt.PrintOut()

ADO Data

Using ADO data is a bit different than the previous data access methods. Because ADO is an

object held in memory, there is no physical file for Crystal Reports to use. In this case, create the

ADO RecordSet and pass it to Crystal Reports.

LOCAL oCR AS CRAXDRT.Application
LOCAL oRpt AS CRAXDRT.Report
LOCAL oDB AS CRAXDRT.Database
LOCAL ocDBT AS CRAXDRT.DatabaseTables
LOCAL oDBT AS CRAXDRT.DatabaseTable
LOCAL oConn AS ADODB.Connection
LOCAL oRS AS ADODB.Recordset

* Handle the ADO stuff
oConn = CREATEOBJECT("ADODB.Connection")
oConn.ConnectionString = "Provider=VFPOLEDB.1;Data

Source=C:\eFox\Data\tastrade.dbc;Password=''"
oConn.Open()
oRS = CREATEOBJECT("ADODB.RecordSet")
oRS.Open("Select * FROM Customer", oConn)

oCR = CREATEOBJECT("CrystalRuntime.Application")

oRpt = oCR.OpenReport("C:\EFox\ADO1.RPT")

Copyright 2002-2008, Craig Berntson. All rights reserved.

* Create the Database object
oDB = oRpt.Database()

* Get a references to the DatabaseTables collection
ocDBT = oDB.Tables()

* Get a reference to the DatabaseTable object for table 1
oDBT = ocDBT.Item(1)

* Pass the Record Set to Crystal Reports
oDBT.SetDataSource(oRS)

IF oRPt.HasSavedData
 oRPT.DiscardSavedData()
ENDIF

oRpt.PrintOut()

Parameter Fields

Parameter fields are used to pass information from your application to the RDC. One of the most

common uses is for providing query or sort information to the report.

LOCAL oCR AS CRAXDRT.Application
LOCAL oRpt AS CRAXDRT.Report
LOCAL oDB AS CRAXDRT.Database
LOCAL ocDBT AS CRAXDRT.DatabaseTables
LOCAL oDBT AS CRAXDRT.DatabaseTable
LOCAL ocParm AS CRAXDRT.ParameterFieldDefinitions
LOCAL oParm AS CRAXDRT.ParameterFieldDefinition
oCR = CREATEOBJECT("CrystalRuntime.Application")

oRpt = oCR.OpenReport("C:\EFox\Parms.RPT")

* Create the Database object
oDB = oRpt.Database()

* Get a references to the DatabaseTables collection
ocDBT = oDB.Tables()

* Get a reference to the DatabaseTable object for table 1
oDBT = ocDBT.Item(1)

* This one works for a DSN
oDBT.SetLogOnInfo("TazODBCRuntime")

IF oRPt.HasSavedData
 oRPT.DiscardSavedData()
ENDIF

Copyright 2002-2008, Craig Berntson. All rights reserved.

* Get the Special Message Parameter
ocParm = oRpt.ParameterFields()
oParm = ocParm.Item(1)
oParm.SetCurrentValue("This is the runtime special message")

oRpt.PrintOut()

Exporting Reports

Exporting a report is done in two steps. In step one, you set the report options. Then, in step two,

you actually do the export. The following code will export a report to a Microsoft Excel file:

LOCAL oCR AS CRAXDRT.Application
LOCAL oRpt AS CRAXDRT.Report
LOCAL oExp AS CRAXDRT.ExportOptions
oCR = CREATEOBJECT(“CrystalRuntime.Application”)
oRpt = oCR.OpenReport(“C:\Temp\Taz.RPT”)
oExp = oRpt.ExportOptions()
oExp.DestinationType = 1 && crEDTDiskFile
oExp.FormatType = 27 && crEFTExcel70
oExp.DiskFileName = "C:\Temp\Taz.XLS"
oRpt.Export(.F.)

The False parameter on the Export method tells the RDC to not prompt the user for Export

options.

Previewing Reports

The last major thing that you’ll do with the RDC is previewing reports. This is an ActiveX

control that you can drop on a VFP form. The Report Viewer allows you to control which

options the user has available at runtime. For example, you can set the Visible property of the

Export button to prohibit exporting the report.

Select the Crystal Report Viewer Control from the Controls tab of the VFP Options dialog.

The following form code shows you how to preview a report. In this example, the Report Viewer

control has been dropped on the form and named oleCRViewer.

DEFINE CLASS form1 AS form
 Caption = "Report Preview"
 oCrystal = .F.
 oReport = .F.
 PROCEDURE Init
 LPARAMETERS tcReport

 LOCAL cr AS crViewer.crViewer

Copyright 2002-2008, Craig Berntson. All rights reserved.

 WITH This
 .WindowState = 2
 .oCrystal = CREATEOBJECT("CrystalRuntime.Application")
 .oReport = .oCrystal.OpenReport(tcReport)

 WITH .oleCRViewer
 .EnableExportButton = .T.
 .EnableProgressControl = .T.
 .ReportSource = ThisForm.oReport
 .EnableAnimationCtrl = .F.
 .ViewReport()
 ENDWITH
 .Visible = .T.
 ENDWITH
 ENDPROC

 PROCEDURE Resize
 WITH This.oleCRViewer
 .Top = 1
 .Left = 1
 .Height = This.Height - 2
 .Width = This.Width - 2
 ENDWITH
 ENDPROC

 PROCEDURE Error
 LPARAMETERS nError, cMethod, nLine

 IF nError != 1440
 DODEFAULT()
 ENDIF
 ENDPROC

 PROCEDURE Destroy
 WITH This
 .oReport = NULL
 .oCrystal = NULL
 ENDWITH
 ENDPROC

 PROCEDURE Activate
 WITH This.olecrViewer
 .Top = 1
 .Left = 1
 .Height = ThisForm.Height - 2
 .Width = ThisForm.Width - 2
 ENDWITH
 ENDPROC
ENDDEFINE

COM Integration

Copyright 2002-2008, Craig Berntson. All rights reserved.

There are two ways to integrate COM into a Crystal application. The first is through

UserFunctionLibraries. The second is via event binding.

User Function Libraries

User Function Libraries (UFLs) are COM components that are available under Additional

Functions in the Functions listing in the Crystal Reports Formula Editor. The component is a

standard COM component.

You need to follow two rules when building the component. First, the project name must begin

with CRUFL. When Crystal Reports launches, it scans the registry for any components using this

naming convention.

Second, you must define parameter and return types. If you fail to do this, Crystal Reports will

not recognize the component. This requires that you use VFP 7.0 to create UFLs as previous

versions do not support this.

Note: There are some changes to UFLs with Crystal Reports 9. First, you must base your OLEPUBLIC

object on the Session class. No other class will work. Second, all functions in the class must have data types of

parameters and return values declared. If you don't want the function to show up in Crystal Reports, define

it as PRIVATE.

Event Binding

The RDC has a few events available that you can hook into. The following code shows and

example of how to bind to some of these events.

LOCAL oCR AS CRAXDRT.Application
LOCAL oRpt AS CRAXDRT.Report
LOCAL oDB AS CRAXDRT.Database
LOCAL ocDBT AS CRAXDRT.DatabaseTables
LOCAL oDBT AS CRAXDRT.DatabaseTable
oCR = CREATEOBJECT("CrystalRuntime.Application")
oRpt = oCR.OpenReport("C:\EFox\ODBC1.RPT")

* Setup the event binding
oEvents = NEWOBJECT("CrystalEvents")
oEvents.oRpt = oRpt
EVENTHANDLER(oRpt, oEvents)

* Create the Database object
oDB = oRpt.Database()

* Get a references to the DatabaseTables collection
ocDBT = oDB.Tables()

* Get a reference to the DatabaseTable object for table 1
oDBT = ocDBT.Item(1)

Copyright 2002-2008, Craig Berntson. All rights reserved.

* Set the location

* This one works for a DSN
oDBT.SetLogOnInfo("TazODBCRuntime")

IF oRPt.HasSavedData
 oRPT.DiscardSavedData()
ENDIF

oRpt.PrintOut()
RETURN

DEFINE CLASS CrystalEvents AS session OLEPUBLIC

 IMPLEMENTS IReportEvent IN "CrystalRuntime.Application"

 oRpt = NULL

 PROCEDURE IReportEvent_NoData(pCancel AS LOGICAL) AS VOID ;
 HELPSTRING "Fires this event when there is no data"

 * add user code here
 ENDPROC

 PROCEDURE IReportEvent_BeforeFormatPage(PageNumber AS Number) ;

 AS VOID ;

 HELPSTRING "Fires this event before formatting a page"

 * add user code here
 ENDPROC

 PROCEDURE IReportEvent_AfterFormatPage(PageNumber AS Number) ;

 AS VOID ;
 HELPSTRING "Fires this event after formatting a page"

 STRTOFILE("AfterFormatPage", "C:\temp\cr.txt")
 ENDPROC

 PROCEDURE IReportEvent_FieldMapping(reportFieldArray AS VARIANT, ;

 databaseFieldArray AS VARIANT, useDefault AS LOGICAL) AS VOID ;
 HELPSTRING "Fires this event if database is changed while "

 + "verifing database"

 * add user code here
 ENDPROC
ENDDEFINE

Creating Reports

The RDC gives you complete control over creating your reports. You can do this either

programmatically or use the runtime designer and let users create their own reports. With both of

these options, additional licensing is required.

Copyright 2002-2008, Craig Berntson. All rights reserved.

Coded Reports

With coded reports, you either create a report from scratch and build it in code or you can

modify an existing report. Each object on the report is accessible using the RDC object model.

You create a report using the New() method of the Application object. You can save it using the

SaveAs() method of the Report object.

The Runtime Designer

The Runtime Designer is an embeddable control that gives report design capabilities to end

users. It does not provide preview capabilities, so it is commonly placed on a page frame with

one page used for the designer and the second for previewing the report. Drop the Embeddable

Crystal Reports 8.5 Designer Control onto the form or page. Also note that you need to use the

CRAXDDRT.DLL automation server instead of the CRAXDRT.DLL.

DEFINE CLASS form1 AS form
 Top = 0
 Left = 0
 Height = 479
 Width = 563
 DoCreate = .T.
 Caption = "Report Designer"
 Name = "Form1"
 ocrystal = NULL
 oreport = NULL
 ADD OBJECT pgfcrystal AS pageframe WITH ;
 ErasePage = .T., ;
 PageCount = 2, ;
 TabStyle = 1, ;
 Top = 12, ;
 Left = 12, ;
 Width = 541, ;
 Height = 461, ;
 Name = "pgfCrystal", ;
 Page1.Caption = "Design", ;
 Page1.Name = "Page1", ;
 Page2.Caption = "Preview", ;
 Page2.Name = "Page2"

 ADD OBJECT form1.pgfcrystal.page1.oledesign AS olecontrol WITH ;
 Top = 8, ;
 Left = 11, ;
 Height = 421, ;
 Width = 517, ;
 Name = "oleDesign"

 ADD OBJECT form1.pgfcrystal.page2.olepreview AS olecontrol WITH ;
 Top = 8, ;
 Left = 11, ;
 Height = 421, ;
 Width = 517, ;

Copyright 2002-2008, Craig Berntson. All rights reserved.

 Name = "olePreview"

 PROCEDURE Init
 LPARAMETERS tcReport

 WITH This
 .WindowState = 2
 .oCrystal = CREATEOBJECT("CrystalDesignRuntime.Application")
 IF EMPTY(tcReport)
 .oReport = .oCrystal.NewReport()
 ELSE
 .oReport = .oCrystal.OpenReport(tcReport)
 ENDIF

 WITH THis.pgfCrystal.Page1.oleDesign
 .DisplayToolbar = .T.
 .DisplayFieldView = .T.
 .ReportObject = ThisForm.oReport
 ENDWITH

 WITH .pgfCrystal.Page2.olePreview
 .EnableExportButton = .T.
 .EnableProgressControl = .T.
 .EnableAnimationCtrl = .F.
 .ReportSource = ThisForm.oReport
 ENDWITH
 .Visible = .T.
 ENDWITH
 ENDPROC

 PROCEDURE Resize
 WITH This
 .pgfCrystal.Top = .Top + 5
 .pgfCrystal.Left = .Left + 5
 .pgfCrystal.Width = .Width - 10
 .pgfCrystal.Height = .Height - 10
 ENDWITH

 WITH This.pgfCrystal
 .Page1.oleDesign.Top = .Top + 3
 .Page1.oleDesign.Left = .Left + 3
 .Page1.oleDesign.Width = .Width - 18
 .Page1.oleDesign.Height = .Height - 18
 ENDWITH

 WITH This.pgfCrystal
 .Page2.olePreview.Top = .Top + 3
 .Page2.olePreview.Left = .Left + 3
 .Page2.olePreview.Width = .Width - 18
 .Page2.olePreview.Height = .Height - 18
 ENDWITH
 ENDPROC

 PROCEDURE pgfcrystal.Page1.Activate
 This.Refresh()

Copyright 2002-2008, Craig Berntson. All rights reserved.

 ENDPROC

 PROCEDURE pgfcrystal.Page2.Activate
 This.olePreview.ViewReport()
 ENDPROC
ENDDEFINE

Distribution

Many people are confused about distributing their reports. There are three issues to be aware of,

RPT files, Crystal Reports runtime libraries, and support DLLs. Be aware that the exact file and

location of these files varies depending on the version of Windows used. Some DLLs also need

to be registered. Crystal Reports ships with the file Runtime.HLP that lists all the needed files,

locations, and registration information.

First, you must distribute the RPT files. Crystal Reports requires each file to be available. You

can distribute these separately or compile them into your EXE, then copy them out as needed.

Second, you must know which Runtime libraries to distribute. Generally, you’ll need the

CRAXDRT.DLL. Look at the Runtime.HLP to find a listing of needed files.

Finally, you need to deal with support DLLs. There are different DLLs needed depending on

features used, export options, graphing etc. For example, ODBC data access uses different DLLs

than OLEDB/ADO access. Again, refer to Runtime.HLP for a list of the exact files you need.

Licensing

Crystal Decisions provides a number of licensing options, depending on your distribution needs.

The licensing plans described here were in affect at the time this document was written in March,

2002. You should check with Crystal Decisions to verify that licensing terms have not changed.

The simplest of these licensing programs is the Developer Edition Licensing. This is the standard

licensing scheme and gives you royalty free distribution of canned reports provided the reports

run on the desktop.

The Report Creation API License allows you to create reports at runtime, either through code or

the embeddable designer. Your reports must still run on the desktop. The cost for this license is

$199 per user.

If you are using web-based reporting, the reports are run on a server, or the reports are

distributed via some kind of scheduling mechanism, you’ll need to investigate a concurrent

licensing plan. The costs for these plans are based on the number of concurrent users and the

type of distribution you are using. Contact Crystal Decisions for specific licensing options and

costs.

Copyright 2002-2008, Craig Berntson. All rights reserved.

Licensing information is available on your Crystal Reports CD in the License.HLP file, from the

web at www.crystaldecisions.com/crystalreports/licensing, or from a Crystal Decisions sales rep

at 1-800-877-2340.

Resources

Crystal Reports ships with several files that are aimed at the developer. The first is

CrystalDevHelp.CHM. This file is a good place to start when you first begin working with

Crystal Reports.

In addition, several PDF files are located in the Docs folder on the distribution CD. These files

are not installed with the product. I’ve copied the entire directory to my harddrive so it is always

accessible.

Finally, there are whitepapers, FAQS, KB articles, and more on the web at

www.crystaldecisions.com.

Conclusion

Crystal Reports provides a robust and complete reporting environment for any data source

through the RDC. It is easy to provide canned reports or to create them from scratch either

programmatically or via a runtime designer. Keep in mind that the use of some components

requires additional licensing from Crystal Decisions.

http://www.crystaldecisions.com/crystalreports/licensing

